

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 1003-1005

Nucleophilic amination of 2-iodo-3-nitro-1-(phenylsulfonyl)indole

Sujata Roy and Gordon W. Gribble*

Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA

Received 30 October 2006; revised 29 November 2006; accepted 4 December 2006 Available online 22 December 2006

Abstract—The reaction of 2-iodo-3-nitro-1-(phenylsulfonyl)indole (2) with amines affords the corresponding 2-amino-3-nitroindoles in excellent yields via nucleophilic aromatic substitution.

© 2006 Elsevier Ltd. All rights reserved.

Indoles and fused indoles that contain a nitrogen atom at C-2 both occur naturally and are potential useful synthetic intermediates for pharmacologically important compounds.^{1,2} For example, the anticholinesterase alkaloid physostigmine has a long and rich history and clinical utility,^{1a} the structurally related bromine-containing flustramine marine indoles continue to be of interest,^{1b} the novel pyrrolo[2,3-b]indole alkaloids pyrroindomycins A and B have powerful antibiotic activity against drug-resistant bacteria,1c and other natural products embodied with a C-2 nitrogen are known.1d,e Certain synthetic 2-aminoindole derivatives are both anti-hypertensive agents and potent inhibitors of blood platelet aggregation and thromboxane synthetase,^{2a} pyrimidino[1,2-a]indoles are 5HT4-receptor antagonists,^{2b} and indolo[2,1-d][1,2,3,5]tetrazines are used for the treatment of melanoma, mycosis fungoides, and brain tumors.^{2c,d} Whereas the π -excessive indole ring readily reacts with electrophiles at C-3,³ it is much less prone to undergo reaction with nucleophiles,⁴ and C-2 substitution is especially difficult, except for metalation techniques such as α -lithiation⁵ and α -palladation⁶ followed by the addition of electrophiles. For example, Witulski et al. have recently reported a palladium catalyzed synthesis of 3-substituted 2-aminoindoles by a heteroannulation reaction.⁷

Traditional syntheses of 2-aminoindoles and protected derivatives include reductive cyclization of (2-nitrophenyl)acetonitriles,⁸ reaction of indoles with arylsulfonyl azides,⁹ amination of 2-indolinethiones,¹⁰ Curtius degradation of indole-2-carboxylic acid azides,¹¹ cyclization of 1-aryl-2-acylhydrazines¹² and 1-arylamino-1-acylhydrazones,¹³ and heating *N*-methyloxindole with hexamethylphosphoramide.¹⁴ In addition, we recently reported the reductive acylation of 2-(and 3-)nitroindoles.¹⁵

Despite these known routes to 2-aminoindoles, their extreme sensitivity to oxidation¹⁶ has thwarted more direct syntheses and studies of simple 2-aminoindoles. Moreover, the obvious S_NAr nucleophilic displacement of an activated C-2 haloindole has only been reported a few times,^{1c,2a,17} although such displacements are well known with other π -excessive heterocycles.^{18–22}

Our earlier work demonstrating nucleophilic addition reactions of 2- and 3-nitroindoles²³ suggested that an S_NAr displacement reaction with 2-halo-3-nitroindoles would offer a simple route to 2-amino-3-nitroindoles. Indeed, we now report that 2-iodo-3-nitro-1-(phenylsulfonyl)indole (2) undergoes a S_NAr reaction with secondary amines to give the corresponding 2-amino-3-nitroindoles. Initially, we treated the previously unknown 2-iodo-3-nitro-1-(phenylsulfonyl)indole (2) with dimethylamine (40 wt % solution in water). To our delight, the desired C-2 substituted product 3 was obtained in excellent yield (Scheme 1).^{24,25} Compound **2** is very reactive toward this S_NAr reaction under mild conditions, as no heat or external base is necessary. However, reactions of 2 with sodium azide, ammonia (both in methanol and dioxane), and phenol in the presence of triethyl amine were unsuccessful. Nitroindole 2 is conveniently prepared in gram amounts in 78% yield by the nitration of 2-iodoindole 1^{26} with acetyl nitrate (3.5 equiv) at 0° C.^{23b,27}

Likewise, treatment of **2** with diethylamine gives aminoindole 4^{28} in 76% yield, and dibenzylamine affords 5^{29} in

Keywords: Indoles; Aminoindoles; Nitroindoles; S_NAr reactions.

^{*} Corresponding author. Tel.: +1 603 646 3118; fax: +1 603 646 3946; e-mail: ggribble@dartmouth.edu

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.12.004

91% yield under the same reaction conditions. Reaction of **2** with pyrrolidine gives 2-pyrrolidinylindole 6^{30} in very high yield, and a similar reaction with piperidine furnishes 7^{31} in 81% yield. Morpholine and *N*-methyl-piperazine also provide the expected 2-aminoindoles 8^{32} and 9,³³ respectively. However, treatment of **2** with cyclohexylamine under the usual conditions gives 2-aminoindole 10^{34} only in 43% yield (Scheme 1).

In summary, we have described a S_NAr reaction on the readily available 2-iodo-3-nitroindole **2** that gives 2-amino-3-nitroindoles in good to excellent yields. This route should provide a simple and versatile entry to a wide variety of C-2, C-3 difunctionalized indoles and related polycyclic systems, and we are pursuing these ideas.

Acknowledgements

This work was supported by the Donors of the Petroleum Research Fund (PRF), administered by the American Chemical Society, and by Wyeth.

References and notes

- For a review, see: (a) Hostettmann, K.; Borloz, A.; Urbain, A.; Marston, A. Curr. Org. Chem. 2006, 10, 825– 847; for an excellent lead reference and recent synthesis, see: Rege, P. D.; Johnson, F. J. Org. Chem. 2003, 68, 6133–6139; For reviews of the bryozoan Flustra foliacea alkaloids, see: (b) Peters, L.; Wright, A. D.; Krick, A.; König, G. M. J. Chem. Ecol. 2004, 30, 1165–1181; Christophersen, C. Alkaloids 1985, 24, 25–111; (c) Ding, W.; Williams, D. R.; Northcote, P.; Siegel, M. M.; Tsao, R.; Ashcroft, J.; Morton, G. O.; Alluri, M.; Abranat, D., et al. J. Antibiot. 1994, 47, 1250–1257; (d) Comber, M. F.; Moody, C. J. Synthesis 1992, 731–733, and references cited therein; (e) Kobayashi, J.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita, H. J. Org. Chem. 2001, 66, 6626– 6633.
- (a) Monge, A.; Palop, J.; Ramirez, C.; Font, M.; Fernandez-Alvarez, E. *Eur. J. Med. Chem.* **1991**, *26*, 179–188; (b) de la Mora, M.; Cuevas, E.; Muchowski, J. M.; Cruz-Almanza, R. *Tetrahedron Lett.* **2001**, *42*, 5351–5353, and a reference cited therein; (c) Diana, P.; Barraja, P.; Lauria,

A.; Almerico, A. M.; Dattolo, G.; Cirrincione, G. *Tetrahedron* **2000**, *56*, 5177–5183, and references cited therein; (d) Barraja, P.; Diana, P.; Lauria, A.; Almerico, A. M.; Dattolo, G.; Cirrincione, G. *Il Farmaco* **2002**, *57*, 97–100.

- (a) Sundberg, R. J. In *The Chemistry of Indoles*, 2nd ed.; Academic: New York, 1970; (b) Sundberg, R. J. *Indoles*; Academic: San Diego, 1996; (c) Black, D. St. C., In *Comprehensive Heterocyclic Chemistry*; Elsevier: Oxford, UK, 1996; Vol. 2, pp 39–117.
- For an excellent review of nucleophilic addition to the indole double bond, see: (a) Joule, J. A. *Prog. Heterocycl. Chem.* 1999, 11, 45–65; For reviews of the chemistry of *N*hydroxyindoles including nucleophilic addition, see: (b) Somei, M. *Heterocycles* 1999, 50, 1157–1211; Somei, M. *Adv. Heterocycl. Chem.* 2002, 82, 101–155.
- 5. Gribble, G. W. Sci. Synth. 2006, 8a, 357-426.
- 6. Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry. A Guide for the Synthetic Chemist; Pergamon Press: Amsterdam, 2000.
- 7. Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257–4260.
- 8. Belley, M.; Sauer, E.; Beaudoin, D.; Duspara, P.; Trimble, L. A.; Dubé, P. *Tetrahedron Lett.* **2006**, *47*, 159–162, and references cited therein.
- (a) Bailey, A. S.; Buckley, A. J.; Warr, W. A.; Wedgwood, J. J. J. Chem. Soc., Perkin Trans. 1 1972, 2411–2415, and previous papers; (b) Harmon, R. E.; Wellman, G.; Gupta, S. K. J. Org. Chem. 1973, 38, 11–16; (c) de la Mora, M. A.; Cuevas, E.; Muchowski, J. M.; Cruz-Almanza, R. Tetrahedron Lett. 2001, 42, 5351–5353; (d) He, P.; Zhu, S.-Z. J. Fluorine Chem. 2005, 126, 113–120; (e) He, P.; Zhu, S.-Z. J. Fluorine Chem. 2005, 126, 825–830.
- Hino, T.; Nakagawa, M.; Hashizume, T.; Yamaji, N.; Miwa, Y.; Tsuneoka, K.; Akaboshi, S. *Tetrahedron* 1971, 27, 775–787, and references cited therein.
- Ishizumi, K.; Inaba, S.; Yamamoto, H. J. Org. Chem. 1974, 39, 2581–2587, and references cited therein.
- (a) Golubeva, G. A.; Portnov, Yu. N.; Kost, A. N. Chem. Heterocycl. Compd. 1973, 471–475; (b) Portnov, Yu. N.; Golubeva, G. A.; Kost, A. N.; Volkov, V. S. Chem. Heterocycl. Compd. 1973, 598–602; (c) Kost, A. N.; Zabrodnyaya, V. G.; Portnov, Yu. N.; Voronin, V. G. Chem. Heterocycl. Compd. 1979, 368–372; (d) Sadovoy, A. V.; Golubeva, G. A. Chem. Heterocycl. Compd. 2005, 41, 1267–1272.
- Benincori, T.; Sannicolo, F. J. Org. Chem. 1988, 53, 1309– 1312.
- (a) Pedersen, E. B.; Lawesson, S.-O. *Tetrahedron* 1974, *30*, 875–878; (b) Sadovoy, A. V.; Golubeva, G. A.; Nasakin, O. E. *Chem. Heterocycl. Compd.* 2001, *37*, 1145–1149.
- Roy, S.; Gribble, G. W. *Heterocycles* 2006, 70, COM-060S(W)8, published online 7.25.06.
- (a) Hino, T.; Nakagawa, M.; Hashizume, T.; Yamaji, N.; Miwa, Y. *Tetrahedron Lett.* **1970**, *11*, 2205–2208; (b) Nakagawa, M.; Yamaguchi, H.; Hino, T. *Tetrahedron Lett.* **1970**, *11*, 4035–4038, and references cited therein.
- (a) Coppola, G. M.; Hardtmann, G. E. J. Heterocycl. Chem. 1977, 14, 1117–1118; (b) Pedras, M. S. C.; Suchy, M. Org. Biomol. Chem. 2005, 3, 2002–2007.
- Halonitropyrroles: Cirrincione, G.; Almerico, A. M.; Passannanti, A.; Diana, P.; Mingola, F. Synthesis 1997, 1169–1173.
- Halonitroimidazoles: (a) Rousseau, R. J.; Townsend, L. B.; Robins, R. K. *Chem. Commun.* **1966**, 265–266; (b) Tennant, G.; Wallis, C. J.; Weaver, G. W. *J. Chem. Soc.*, *Perkin Trans. 1* **1999**, 817–825; (c) Tennant, G.; Wallis, C. J.; Weaver, G. W. *J. Chem. Soc.*, *Perkin Trans. 1* **1999**, 827–832; (d) Taher, A.; Eichenseher, S.; Weaver, G. W. *Tetrahedron Lett.* **2000**, *41*, 9889–9891; (e) Niles, J. C.;

Wishnok, J. S.; Tannenbaum, S. R. J. Am. Chem. Soc. 2001, 123, 12147–12151.

- Halonitrothiophenes: (a) Morley, J. O.; Matthews, T. P. Org. Biomol. Chem. 2006, 4, 359–366; (b) D'Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. J. Org. Chem. 2006, 71, 5144–5150.
- 21. Halonitrobenzothiophenes: Cosimelli, B.; Lamartina, L.; Spinelli, D. *Tetrahedron* **2001**, *57*, 8903–8911.
- 22. Halofurfuraldehydes: Bautista, J. L.; Tiburcio, J.; Torrens, H. Synthesis **2005**, 899–902.
- (a) Pelkey, E. T.; Barden, T. C.; Gribble, G. W. *Tetrahedron Lett.* **1999**, 40, 7615–7619; (b) Pelkey, E. T.; Gribble, G. W. *Synthesis* **1999**, 1117–1122; (c) Kishbaugh, T. L. S.; Gribble, G. W., in preparation.
- 24. Representative procedure: To a stirred suspension of 2 (0.2 mmol) in methanol (1.5 mL) at 0 °C was added dropwise the corresponding amine (0.6 mmol). The mixture was stirred at rt for 3 h and then poured into ice-cold water (30 mL) and extracted with ethyl acetate $(2 \times 25 \text{ mL})$. The combined organic extract was washed with brine and dried (Na₂SO₄). The solvent was evaporated and the residue was purified by column chromatography on silica gel to yield the desired product.
- 25. N,N-Dimethyl-3-nitro-(1-phenylsulfonyl)-1H-indol-2-amine (3): mp 110–112 °C; ¹H NMR (acetone- d_6): δ 8.09–8.11 (m, 1H), 7.87–7.89 (m, 1H), 7.63–7.69 (m, 3H), 7.51–7.54 (m, 2H), 7.38–7.43 (m, 2H), 3.13 (s, 3H); ¹³C NMR (acetone- d_6): δ 152.2, 137.1, 135.8, 132.4, 130.4, 128.1, 127.4, 126.3, 125.7, 120.4, 118.2, 44.6; LRMS (EI): m/z345 (M⁺), 300, 204 (100%), 157, 144, 131, 117, 77; HRMS (EI): calcd for C₁₆H₁₅N₃O₄S: 345.0783, found: 345.0782.
- 26. Roy, S.; Gribble, G. W. Tetrahedron Lett. 2005, 46, 1325– 1328.
- 27. 2-Iodo-3-nitro-1-(phenylsulfonyl)indole (2): mp 197– 199 °C; ¹H NMR (CDCl₃): δ 8.46 (d, 1H, J = 7.6 Hz), 8.21 (d, 1H, J = 8.5 Hz), 8.02 (d, 2H, J = 7.6 Hz), 7.68 (t, 1H, J = 7.6 Hz), 7.55 (t, 2H, J = 7.9 Hz), 7.44–7.48 (m, 2H); ¹³C NMR (CDCl₃): δ 135.4, 129.8, 127.9, 127.3, 126.0, 120.8, 115.7; LRMS (EI): m/z 428 (M⁺), 271, 141, 77 (100%); HRMS (EI): calcd for C₁₄H₉IN₂O₄S: 427.9328, found: 427.9331.
- N,N-Diethyl-3-nitro-(1-phenylsulfonyl)-1H-indol-2-amine
 (4): mp 104–106 °C; ¹H NMR (acetone-d₆): δ 8.03–8.05 (m, 1H), 7.87–7.89 (m, 1H), 7.62–7.66 (m, 3H), 7.48–7.52 (m, 2H), 7.33–7.36 (m, 2H), 3.64 (m, 4H), 1.17–1.20 (m, 6H); ¹³C NMR (acetone-d₆): δ 150.9, 137.5, 135.7, 132.5, 130.4, 127.9, 127.2, 126.1, 125.6, 120.4, 117.9, 49.2, 13.4; LRMS (EI): m/z 373 (M⁺), 328, 232, 198, 187, 171, 144 (100%), 130, 117, 77; HRMS (EI): calcd for C₁₈H₁₉N₃O₄S: 373.1096, found: 373.1095.
- 29. 3-Nitro-2-[bis(phenylmethyl)amino]-(1-phenylsulfonyl)-1H-indole (5): mp 171–173 °C; ¹H NMR (DMSO-d₆): δ 7.80 (d, 1H, J = 7.6 Hz), 7.71 (d, 1H, J = 7.9 Hz), 7.56 (t, 1H, J = 7.3 Hz), 7.32–7.37 (m, 14H), 7.24–7.27 (m, 1H),

7.19–7.22 (m, 1H), 4.76 (s, 4H); ¹³C NMR (DMSO- d_6): δ 149.5, 135.8, 135.7, 134.9, 130.7, 129.5, 129.2, 128.5, 128.1, 126.5, 126.4, 125.1, 124.1, 121.5, 119.3, 116.3, 58.5; LRMS (EI): m/z 497 (M⁺), 392. 356, 310, 235, 219, 105, 91 (100%), 77; HRMS (EI): calcd for C₂₈H₂₃N₃O₄S: 497.1409, found: 497.1402.

- 30. 3-Nitro-(1-phenylsulfonyl)-2-(1-pyrrolidinyl)-1H-indole (6): mp 109–111 °C; ¹H NMR (acetone- d_6): δ 8.05–8.07 (m, 1H), 7.85–7.88 (m, 1H), 7.64–7.67 (m, 1H), 7.60–7.62 (m, 2H), 7.49–7.52 (m, 2H), 7.35–7.40 (m, 2H), 3.57–3.59 (m, 4H), 2.07–2.10 (m, 4H); ¹³C NMR (acetone- d_6): δ 149.4, 137.1, 135.7, 132.7, 130.6, 130.3, 128.1, 127.4, 126.1, 120.4, 117.9, 54.1, 26.4; LRMS (EI): m/z 371 (M⁺), 326, 288, 230, 213, 185 (100%), 158.143, 130, 117, 77; HRMS (EI): calcd for C₁₈H₁₇N₃O₄S: 371.0940, found: 371.0936.
- 31. 3-Nitro-(1-phenylsulfonyl)-2-(1-piperidinyl)-1H-indole (7): mp 145–147 °C; ¹H NMR (acetone- d_6): δ 8.12–8.14 (m, 1H), 7.85–7.87 (m, 1H), 7.64–7.69 (m, 3H), 7.51–7.55 (m, 2H), 7.39–7.43 (m, 2H), 3.40–3.42 (m, 4H), 1.79–1.83 (m, 4H), 1.72 (m, 2H); ¹³C NMR (acetone- d_6): δ 151.3, 137.5, 135.7, 132.7, 130.4, 127.8, 127.3, 126.4, 125.4, 120.3, 118.0, 54.0, 26.1, 24.4; LRMS (EI): m/z 385 (M⁺), 340, 244 (100%), 224, 199, 144, 115, 77 (100%); HRMS (EI): calcd for C₁₉H₁₉N₃O₄S: 385.1096, found: 385.1094.
- 32. 3-Nitro-2-morpholino-(1-phenylsulfonyl)-1H-indole (8): mp 125–127 °C; ¹H NMR (DMSO- d_6): δ 8.04–8.06 (m, 1H), 7.85–7.87 (m, 1H), 7.66–7.70 (m, 1H), 7.60–7.62 (m, 2H), 7.51–7.54 (m, 2H), 7.39–7.45 (m, 2H), 3.78 (t, 4H, J = 4.6 Hz); ¹³C NMR (DMSO- d_6): δ 148.9, 135.7, 135.2, 131.1, 130.2, 129.8, 127.0, 126.7, 126.0, 123.5, 122.7, 120.7, 119.4, 116.7, 65.7, 51.6; LRMS (EI): m/z 387 (M⁺), 342, 246 (100%), 201, 144, 77; HRMS (EI): calcd for $C_{18}H_{17}N_3O_5S$: 387.0889, found: 387.0888.
- 33. 3-Nitro-2-(4-methyl-1-piperazinyl)-(1-phenylsulfonyl)-1Hindole (9): oil; ¹H NMR (DMSO- d_6): δ 8.03 (d, 1H, J = 7.0 Hz), 7.82–7.84 (m, 1H), 7.77–7.69 (m, 1H), 7.57 (d, 2H, J = 7.3 Hz), 7.52 (t, 2H, J = 7.6 Hz), 7.38–7.43 (m, 2H), 3.41 (s, 8H), 2.31 (s, 3H); ¹³C NMR (DMSO- d_6): δ 149.3, 135.2, 131.1, 129.7, 129.4, 127.5, 126.6, 125.8, 119.3, 116.8, 53.8, 51.3, 45.7; LRMS (EI): m/z 400 (M⁺), 383, 368, 288, 258, 240, 229, 214, 141, 99 (100%), 77; HRMS (EI): calcd for C₁₉H₂₀N₄O₄S: 400.1205, found: 400.1206.
- 34. *N*-*Cyclohexyl-3-nitro-*(*1-phenylsulfonyl*)-*1H-indol-2-amine* (**10**): mp 107–109 °C; ¹H NMR (DMSO-*d*₆): δ 8.82 (d, 1H, *J* = 9.5 Hz), 7.86–7.88 (m, 1H), 7.75–7.77 (m, 1H), 7.65– 7.68 (m, 1H), 7.60–7.62 (m, 2H), 7.48–7.51 (m, 2H), 7.27– 7.33 (m, 2H), 4.11–4.17 (m, 1H), 2.04–2.07 (m, 2H), 1.70– 1.73 (m, 2H), 1.48–1.58 (m, 2H), 1.20–1.36 (m, 4H); ¹³C NMR (DMSO-*d*₆): δ 151.8, 135.6, 134.2, 131.1, 129.7, 127.0, 124.9, 124.0, 118.8, 116.9, 60.1, 33.0, 24.8, 24.4; LRMS (EI): *m/z* 399 (M⁺), 368, 354, 258 (100%), 176, 143, 77; HRMS (EI): calcd for C₂₀H₂₁N₃O₄S: 399.1253, found: 399.1246.